WRITING A FORMULA

OCR GSCE – Thursday 5 November 2020 – Paper 5 (Non-Calculator) Higher Tier

1.

12	(a)		She has reduced the price by 10% oe	B1		e.g. She has decreased by 1000 each year She took 10%/ found 90% [of 20000]
			18050	В3	M2 for 20 000 × 0.95 ² oe or B1 for 1000 or 19 000 seen	See AG
12	(b)	(i)	20 000 × 0.95 ⁿ oe	2	M1 for 0.95 oe or for 20 000 × k^n ($k \neq 0$)	
12	(b)	(ii)	Second graph indicated	1		

OCR GSCE – Monday 12 November 2018 – Paper 6 (Calculator) Higher Tier

2.

13	$8\pi + t\pi + 16 - 2t$ oe including unsimplified expressions	3	B2 for two of $\frac{16\pi}{2}$ oe, $\frac{2t\pi}{2}$ oe, or $16 - 2t$ oe seen	Mark final answer Equivalent simplified expressions include:
			or B1 for one of $\frac{16\pi}{2}$ oe, $\frac{2t\pi}{2}$ oe, or $16-2t$ oe seen	$\pi(8+t)+16-2t$ or $t(\pi-2)+8(\pi+2)$ Penalise use of 3.14 once e.g. 25.1 and 3.14t scores B1

AQA GSCE – Tuesday 19 May 2020 – Paper 1 (Non - Calculator) Higher Tier

	1			
	h = 3n + 20 or $h = 20 + 3n$	В3	oe in the form $h = $ B2 correct equation not or $3n + 20$ or $20 + 3n$ or $h = 3n \ (+k) \ (k \text{ is a not or } h = (k+) 3n \ (k \text{ is a not or } h = an + 20 \ (a \neq 0) $ or $h = 20 + an \ (a \neq 0)$ B1 $3n \ (+k) \ (k \text{ is a number or } (k+) 3n \ (k \text{ is a number or } an + 20 \ (a \neq 0) $ or $20 + an \ (a \neq 0)$ SC1 $n = 3h + 20$	umber or letter) umber or letter)
	Ado			
	Allow $h = \text{in working but omitted on a}$			
17	For an equation in the form $h = \text{in wo}$ incorrectly) for the answer line, award			
	Condone an unsimplified fraction for denominator			
	eg $h = \frac{12}{4}n + 20$	В3		
	An unsimplified fraction for 3 can still integer numerator and denominator			
	eg $h = \frac{32-20}{4}n+20$	B2		
	Allow $3 \times n$ or $n \times 3$ for $3n$			
	Ignore units			
	Condone capital H or N , but for incorting than correct variable(s) would get			
	eg1 $h = 3x + 20$ or $y = 3x + 20$			B2
	eg2 3x + 20	B1		
	eg3 3x			В0

AQA GSCE – Tuesday 21 May 2019 – Paper 1 (Non - Calculator) Higher Tier

	$y^2 = \frac{1}{2}y(y+3)$	B2	oe equation eg $2y^2 = y^2 + 3y$ or $y^2 = 0$ or $y = 3$ or $y = 0$ or $y = 0$ B1 $\frac{1}{2}y(y + 3)$ oe expression or an otherwise correct edifferent unknown or comunknowns	n equation using a
	Ad			
	Allow multiplication signs			
17(a)	$eg \ y \times y = \frac{y}{2} \times (y+3)$		B2	
	$y^2 = \frac{1}{2}y(y + 3)$ followed by incorrect the equation	B2		
	$y^2 = \frac{1}{2}y + y + 3$	В0		
	3 only or 0 only or 0 and 3 only	В0		
	Do not allow missing or partially miss			
	eg1 $y^2 = \frac{1}{2}y \times y + 3$ without correct	seen	В0	
	eg2 $y^2 = \frac{1}{2}y(y + 3)$ without correct e	quation se	een	В0

	Correct comment		eg1 he hasn't square rooted (correctly)			
	or	B1	eg2 it should be $\sqrt{8} x = 3$			
	shows correct working		eg3 he should have divided (by 8) before square rooting			
	Additional Guidance					
	√8 may be given as 2√2					
	Comment that he shouldn't have a ne	egative an	swer	B0		
	Mathematically incorrect statement			В0		
	Correct comment and an incorrect co	mment		В0		
	Ex	cample re	sponses			
	He has taken it as $(8x)^2$	B1				
	He has divided $8x^2$ by x (instead of so the 9	B1				
17(b)	He $\sqrt{}$ first when supposed to divide	B1				
	He didn't divide 9 by 8 to get x^2	B1				
	At the start he took the 8 over when y	B1				
	Toby should have got $\pm \sqrt{\frac{9}{8}}$	B1				
	He should have divided by 8	В0				
	Toby didn't square root 8x	В0				
	He hasn't square rooted the $8x^2$ to le	ts own	В0			
	He hasn't square rooted the other sid	В0				
	Didn't divide by 8	В0				
	He should have divided by 8x			В0		
	He found the square root of 9 but didn't write $\sqrt{8x} = 9$			В0		

AQA GSCE – Tuesday 12 June 2018 – Paper 3 (Calculator) Higher Tier

5.

	4(x + 3)	B1		
15	Additional Guidance			

AQA GSCE – Thursday 2 November 2017 – Paper 1 (Non - Calculator) Higher Tier

	$\frac{1}{2}(b+2b)h \text{ or } 3 \times \frac{1}{2}bh$	M1	oe		
	1.5bh or $\frac{3}{2}bh$ or $\frac{3bh}{2}$ or $1\frac{1}{2}bh$	A1	accept hb for bh		
	Add				
10(a)	10(a) Correct expression with ×, ÷ or brackets Condone units within expressions for M1 only Condone the expression given within a formula				
	eg $A = 1.5hb$		M1A1		
	Condone correct expression stated a values substituted	M1A1			

	3b + 2s or $3b = 2s$ or $4s$	M1	ое		
10(b)	6 <i>b</i>	A1	oe eg b+b+b+b+b+	+ <i>b</i>	
	Additional Guidance				
	Condone the expression given within eg $P = 6b$	a formula	1	M1A1	

AQA GSCE – Thursday 8 June 2017 – Paper 2 (Calculator) Higher Tier

	C 00/01 0 5/01		**	
	C = 0.6(0)n + 2.5(0)		oe	
	Must have $C = \text{ for B3}$ B2 $C = 0.6n + k \ (k \neq 0)$			
		0)		
	Ad	lditional	Guidance	
	Allow correct fractions eg $\frac{3}{5}$ or $\frac{1}{1.6}$			
	Allow $0.6 \times n$ or $n \times 0.6$ for $0.6n$			
	eg $C = 0.6 \times n + 2.5$	B3		
	n × 0.6 + 2.5	B2		
	0.6 × n	B1		
14	Penalise by one mark the use of n0.6			
14	eg C = n0.6 + 2.5	B2		
	n0.6 + 2.5	B1		
	n0.6	B0		
	Penalise by one mark the use of different			
	eg $y = 0.6x + 2.5$	B2		
	0.6x + 2.5			
	2p + 2.5	B0		
	Transposing 0.6 and 2.5 scores zero	eg C = 2	2.5n + 0.6	B0
	Ignore £ signs eg £ C = £0.6 n + £2.5	or C=	£0.60n + £2.5	В3
	C = 1.2n + 2.5	B2		
	1.2n + 2.5	B1		
	C = 0.6n + 2.5 in working with $0.6n + 2$	B3		
	Equivalent formula but C not the subje			
	eg 100C = 60n + 250			B2

AQA GSCE – Sample Paper 1 (Non - Calculator) Higher Tier

	$x \times x \times 2x$ or $2x^3$	M1	oe
	$\frac{x}{2}$ used as radius	M1	eg $\pi \times \frac{x}{2} \times \frac{x}{2}$ seen
18	$\frac{1}{2} \times \pi \times \frac{x}{2} \times \frac{x}{2} \times x$ or $\frac{1}{8} \pi x^3$	M1	oe
	$2x^3 + \frac{1}{8}\pi x^3$	A1	Accept $a = 2$ and $b = 8$ Condone if subsequently factorised to $(2 + \frac{1}{8}\pi)x^3$